Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 3, 2026
- 
            Free, publicly-accessible full text available May 26, 2026
- 
            Free, publicly-accessible full text available November 22, 2025
- 
            The prevalent issue in urban trajectory data usage, notably in low-sample rate datasets, revolves around the accuracy of travel time estimations, traffic flow predictions, and trajectory similarity measurements. Conventional methods, often relying on simplistic mixes of static road networks and raw GPS data, fail to adequately integrate both network and trajectory dimensions. Addressing this, the innovative GRFTrajRec framework offers a graph-based solution for trajectory recovery. Its key feature is a trajectory-aware graph representation, enhancing the understanding of trajectory-road network interactions and facilitating the extraction of detailed embedding features for road segments. Additionally, GRFTrajRec's trajectory representation acutely captures spatiotemporal attributes of trajectory points. Central to this framework is a novel spatiotemporal interval-informed seq2seq model, integrating an attention-enhanced transformer and a feature differences-aware decoder. This model specifically excels in handling spatiotemporal intervals, crucial for restoring missing GPS points in low-sample datasets. Validated through extensive experiments on two large real-life trajectory datasets, GRFTrajRec has proven its efficacy in significantly boosting prediction accuracy and spatial consistency.more » « less
- 
            Forecasting citations of scientific patents and publications is a crucial task for understanding the evolution and development of technological domains and for foresight into emerging technologies. By construing citations as a time series, the task can be cast into the domain of temporal point processes. Most existing work on forecasting with temporal point processes, both conventional and neural network-based, only performs single-step forecasting. In citation forecasting, however, the more salient goal isn-step forecasting: predicting the arrival of the nextncitations. In this article, we propose Dynamic Multi-Context Attention Networks (DMA-Nets), a novel deep learning sequence-to-sequence (Seq2Seq) model with a novel hierarchical dynamic attention mechanism for long-term citation forecasting. Extensive experiments on two real-world datasets demonstrate that the proposed model learns better representations of conditional dependencies over historical sequences compared to state-of-the-art counterparts and thus achieves significant performance for citation predictions.more » « less
- 
            Influence maximization (IM) is the problem of identifying a limited number of initial influential users within a social network to maximize the number of influenced users. However, previous research has mostly focused on individual information propagation, neglecting the simultaneous and interactive dissemination of multiple information items. In reality, when users encounter a piece of information, such as a smartphone product, they often associate it with related products in their minds, such as earphones or computers from the same brand. Additionally, information platforms frequently recommend related content to users, amplifying this cascading effect and leading to multiplex influence diffusion.This paper first formulates the Multiplex Influence Maximization (Multi-IM) problem using multiplex diffusion models with an information association mechanism. In this problem, the seed set is a combination of influential users and information. To effectively manage the combinatorial complexity, we propose Graph Bayesian Optimization for Multi-IM (GBIM). The multiplex diffusion process is thoroughly investigated using a highly effective global kernelized attention message-passing module. This module, in conjunction with Bayesian linear regression (BLR), produces a scalable surrogate model. A data acquisition module incorporating the exploration-exploitation trade-off is developed to optimize the seed set further.Extensive experiments on synthetic and real-world datasets have proven our proposed framework effective. The code is available at https://github.com/zirui-yuan/GBIM.more » « less
- 
            Due to the significance of its various applications, source localization has garnered considerable attention as one of the most important means to confront diffusion hazards. Multi-source localization from a single-snapshot observation is especially relevant due to its prevalence. However, the inherent complexities of this problem, such as limited information, interactions among sources, and dependence on diffusion models, pose challenges to resolution. Current methods typically utilize heuristics and greedy selection, and they are usually bonded with one diffusion model. Consequently, their effectiveness is constrained.To address these limitations, we propose a simulation-based method termed BOSouL. Bayesian optimization (BO) is adopted to approximate the results for its sample efficiency. A surrogate function models uncertainty from the limited information. It takes sets of nodes as the input instead of individual nodes. BOSouL can incorporate any diffusion model in the data acquisition process through simulations. Empirical studies demonstrate that its performance is robust across graph structures and diffusion models. The code is available at https://github.com/XGraph-Team/BOSouL.more » « less
- 
            Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural NetworksDeep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
